Ask a Question Types in GraphQL This page describes how you can use GraphQL types to set up a GraphQL schema for Dgraph database. Scalars Dgraph’s GraphQL implementation comes with the standard GraphQL scalar types: Int, Float, String, Boolean and ID. There’s also an Int64 scalar, and a DateTime scalar type that is represented as a string in RFC3339 format. Scalar types, including Int, Int64, Float, String and DateTime; can be used in lists. Lists behave like an unordered set in Dgraph. For example: ["e1", "e1", "e2"] may get stored as ["e2", "e1"], so duplicate values will not be stored and order might not be preserved. All scalars may be nullable or non-nullable. Note The Int64 type introduced in release v20.11 represents a signed integer ranging between -(2^63) and (2^63 -1). Signed Int64 values in this range will be parsed correctly by Dgraph as long as the client can serialize the number correctly in JSON. For example, a JavaScript client might need to use a serialization library such as json-bigint to correctly write an Int64 value in JSON. The ID type is special. IDs are auto-generated, immutable, and can be treated as strings. Fields of type ID can be listed as nullable in a schema, but Dgraph will never return null. Schema rule: ID lists aren’t allowed - e.g. tags: [String] is valid, but ids: [ID] is not. Schema rule: Each type you define can have at most one field with type ID. That includes IDs implemented through interfaces. It’s not possible to define further scalars - you’ll receive an error if the input schema contains the definition of a new scalar. For example, the following GraphQL type uses all of the available scalars. type User { userID: ID! name: String! lastSignIn: DateTime recentScores: [Float] reputation: Int active: Boolean } Scalar lists in Dgraph act more like sets, so tags: [String] would always contain unique tags. Similarly, recentScores: [Float] could never contain duplicate scores. Enums You can define enums in your input schema. For example: enum Tag { GraphQL Database Question ... } type Post { ... tags: [Tag!]! } Types From the built-in scalars and the enums you add, you can generate types in the usual way for GraphQL. For example: enum Tag { GraphQL Database Dgraph } type Post { id: ID! title: String! text: String datePublished: DateTime tags: [Tag!]! author: Author! } type Author { id: ID! name: String! posts: [Post!] friends: [Author] } Schema rule: Lists of lists aren’t accepted. For example: multiTags: [[Tag!]] isn’t valid. Schema rule: Fields with arguments are not accepted in the input schema unless the field is implemented using the @custom directive. Interfaces GraphQL interfaces allow you to define a generic pattern that multiple types follow. When a type implements an interface, that means it has all fields of the interface and some extras. According to GraphQL specifications, you can have the same fields in implementing types as the interface. In such cases, the GraphQL layer will generate the correct Dgraph schema without duplicate fields. If you repeat a field name in a type, it must be of the same type (including list or scalar types), and it must have the same nullable condition as the interface’s field. Note that if the interface’s field has a directory like @search then it will be inherited by the implementing type’s field. For example: interface Fruit { id: ID! price: Int! } type Apple implements Fruit { id: ID! price: Int! color: String! } type Banana implements Fruit { id: ID! price: Int! } Tip GraphQL will generate the correct Dgraph schema where fields occur only once. The following example defines the schema for posts with comment threads. As mentioned, Dgraph will fill in the Question and Comment types to make the full GraphQL types. interface Post { id: ID! text: String datePublished: DateTime } type Question implements Post { title: String! } type Comment implements Post { commentsOn: Post! } The generated schema will contain the full types, for example, Question and Comment get expanded as: type Question implements Post { id: ID! text: String datePublished: DateTime title: String! } type Comment implements Post { id: ID! text: String datePublished: DateTime commentsOn: Post! } Note If you have a type that implements two interfaces, Dgraph won’t allow a field of the same name in both interfaces, except for the ID field. Dgraph currently allows this behavior for ID type fields since the ID type field is not a predicate. Note that in both interfaces and the implementing type, the nullable condition and type (list or scalar) for the ID field should be the same. For example: interface Shape { id: ID! shape: String! } interface Color { id: ID! color: String! } type Figure implements Shape & Color { id: ID! shape: String! color: String! size: Int! } Union type GraphQL Unions represent an object that could be one of a list of GraphQL Object types, but provides for no guaranteed fields between those types. So no fields may be queried on this type without the use of type refining fragments or inline fragments. Union types have the potential to be invalid if incorrectly defined: A Union type must include one or more unique member types. The member types of a Union type must all be Object base types; Scalar, Interface and Union types must not be member types of a Union. Similarly, wrapping types must not be member types of a Union. For example, the following defines the HomeMember union type: enum Category { Fish Amphibian Reptile Bird Mammal InVertebrate } interface Animal { id: ID! category: Category @search } type Dog implements Animal { breed: String @search } type Parrot implements Animal { repeatsWords: [String] } type Cheetah implements Animal { speed: Float } type Human { name: String! pets: [Animal!]! } union HomeMember = Dog | Parrot | Human type Zoo { id: ID! animals: [Animal] city: String } type Home { id: ID! address: String members: [HomeMember] } So, when you want to query members in a Home, you will be able to do a GraphQL query like this: query { queryHome { address members { ... on Animal { category } ... on Dog { breed } ... on Parrot { repeatsWords } ... on Human { name } } } } And the results of the GraphQL query will look like the following: { "data": { "queryHome": { "address": "Earth", "members": [ { "category": "Mammal", "breed": "German Shepherd" }, { "category": "Bird", "repeatsWords": ["Good Morning!", "I am a GraphQL parrot"] }, { "name": "Alice" } ] } } } Password type A password for an entity is set with setting the schema for the node type with @secret directive. Passwords cannot be queried directly, only checked for a match using the checkTypePassword function where Type is the node type. The passwords are encrypted using Bcrypt. Note For security reasons, Dgraph enforces a minimum password length of 6 characters on @secret fields. For example, to set a password, first set schema: Cut-and-paste the following schema into a file called schema.graphql type Author @secret(field: "pwd") { name: String! @id } Run the following curl request: curl -X POST localhost:8080/admin/schema --data-binary '@schema.graphql' Set the password by pointing to the graphql endpoint (http://localhost:8080/graphql): mutation { addAuthor(input: [{name:"myname", pwd:"mypassword"}]) { author { name } } } The output should look like: { "data": { "addAuthor": { "author": [ { "name": "myname" } ] } } } You can check a password: query { checkAuthorPassword(name: "myname", pwd: "mypassword") { name } } output: { "data": { "checkAuthorPassword": { "name": "myname" } } } If the password is wrong you will get the following response: { "data": { "checkAuthorPassword": null } } Geolocation types Dgraph GraphQL comes with built-in types to store Geolocation data. Currently, it supports Point, Polygon and MultiPolygon. These types are useful in scenarios like storing a location’s GPS coordinates, representing a city on the map, etc. For example: type Hotel { id: ID! name: String! location: Point area: Polygon } Point type Point { longitude: Float! latitude: Float! } PointList type PointList { points: [Point!]! } Polygon type Polygon { coordinates: [PointList!]! } MultiPolygon type MultiPolygon { polygons: [Polygon!]! } ← Schema Migration IDs in GraphQL →